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Abstract

Different sources of international statistics — like the World Development Indica-

tors (WDI), the PennWorld Table, or the Maddison Project — often provide conflicting

information about a country’s economic activity. Even different versions of the WDI

provide conflicting information. Why? I use machine learning to understand what

predicts variation in data coverage and comparability across all WDI releases from

1994 to 2022. Authoritarianism, corruption, low state capacity, and recent indepen-

dence strongly predict whether observations are missing, but not whether they are

comparable. Rather, different WDI releases become more comparable as they adopt

newer standardization frameworks or simply as time goes by. These findings highlight

the importance of disclosing the chosen data sources and releases, which might affect

researchers’ empirical results.
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1 Introduction

Performance indicators like the Ease of Doing Business index, the Millennium Development

Goals, or the Freedom in the World report define global standards and rank countries ac-

cording to their ability to meet such standards (Doshi, Kelley and Simmons, 2019; Bisbee

et al., 2019). These indicators have recently come under fire for their inconsistency and

politicization; in September 2021, for instance, the World Bank announced that it would

discontinue the Ease of Doing Business index after an internal audit found irregularities in

the coding process (World Bank, 2021). These and many other measures of election in-

tegrity, state capacity, or democratic consolidation rely on expert coding, raising concerns

that experts might be ideologically biased or improperly aggregate different ratings into one

single measure (Bollen and Paxton, 2000; Giannone, 2010; Mart́ınez i Coma and van Ham,

2015; Hanson and Sigman, 2021; McMann et al., 2022).

One might think that economic indicators are less controversial. Gross domestic product

(GDP) captures the value of all final goods and services produced in a country during a

specific period; it does not rely on the construction of subjective categories to measure latent

concepts like business regulation, human development, or freedom. Despite growing criticism

(Mügge, 2022; Merry, 2011), GDP is still widely used in the social sciences, suggesting that

researchers consider it a valid and reliable indicator: it accurately captures its underlying

theoretical concept (the size of a country’s economy) and provides consistent information

across repeated measurements (Gerring, 2012).

Still, GDP measurements are not as consistent as they might seem. The three main data

sources — the World Bank’s World Development Indicators (WDI), the Penn World Table

(PWT), and the Maddison Project — often provide conflicting information. In fact, different

versions of the same data source often provide conflicting information, as Figure 1 shows (see

also Goes 2023). According to WDI figures released in April 2006, Zimbabwe’s GDP in 2002

was around 30.8 billion current US dollars; the December 2022 WDI release reduced this

number to just 6.3 billion. It is difficult, if not impossible, to assess the accuracy of these
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Figure 1: Current GDP of Zimbabwe, 1990–2020
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This boxplot presents the distribution of current GDP estimates for Zimbabwe from 1990 to 2020, using
data drawn from the 109 WDI releases from April 1994 to December 2022. The estimate reported for 2002
is 24.5 billion dollars larger in the April 2006 WDI than in the December 2022 WDI. Section 3 discusses the
data in more detail.

estimates: researchers do not know how far each measurement is from Zimbabwe’s true GDP

in 2002 (the measurement error). But it is possible to compare GDP measurements across

different WDI releases (also called vintages) to quantify their reliability (the measurement

uncertainty).1 This is what the present study aims to do.

I begin by reviewing a rich literature that identifies several sources of measurement un-

certainty in economic data. Autocracies (Hollyer, Rosendorff and Vreeland, 2011), islands

(Ram and Ural, 2014), and African states (Devarajan, 2013) disclose statistics less frequently,

and their statistics tend to be of lower quality. With this research as a starting point, I use

machine learning to identify the systematic predictors of measurement uncertainty across dif-

ferent vintages of the WDI, the most prevalent source of economic data in political science

research (Goes, 2023). Zooming in on Zimbabwe, Figure 2 already identifies one source of

uncertainty: time. Data for older periods tend to be less noisy than data for recent periods.

1This is “the problem of consistency, comparability, or reliability across countries” outlined by Herrera
and Kapur (2007, 368); I use the three words interchangeably.
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Figure 2: Current GDP of Zimbabwe, 1990–2000

(A) Zimbabwe, All WDI Releases 1994−2000 (B) Zimbabwe, All WDI Releases 1994−2010
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(C) Zimbabwe, All WDI Releases 1994−2022
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These boxplots present the distribution of current GDP estimates for Zimbabwe from 1990 to 2000, using
data drawn from (A) the 8 WDI releases from April 1994 to April 2000, (B) the 26 releases from April 1994
to December 2010, and (C) the 109 releases from April 1994 to December 2022. As the number of available
releases goes up, the uncertainty goes down: different releases tend to coalesce around one value for each
country-year pair. Section 3 discusses the data in more detail.

The more time has elapsed, the more vintages are available, which means there are more

measurements of each country-year pair — and these tend to coalesce around one value. In

addition, results coincide with Hollyer, Rosendorff and Vreeland (2011) that uncertainty is
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best predicted by a mix of bureaucratic capacity and political will: different vintages often

provide no GDP information, or conflicting GDP information, when the country in question

lacks the resources or political incentives to provide accurate data. Still, not all data issues

can be systematically predicted; many are idiosyncratic to specific countries and years.

Fariss et al. (2022) have previously quantified uncertainty in GDP and population data,

whereas Johnson et al. (2013) and Goes (2023) showed that this uncertainty affects the

replicability of published studies in economics and political science, respectively. Building

on their work, I provide descriptive evidence with important empirical implications. First,

researchers should be transparent about their data sources and vintages. Second, researchers

should not draw conclusions based on recent years alone, since data for these years are noisy

and susceptible to revisions. Third, those who study autocracies, islands, or African states

should measure the size of a country’s economy using multiple indicators, not just GDP,

given the prevalence of missing or unreliable data. Finally, scholars should be modest when

interpreting empirical findings: one cannot trust empirical findings unless one can trust the

underlying data.

2 The Sources of Uncertainty

WDI, PWT, and Maddison estimates can diverge significantly, even if the underlying data

are the same. Ram and Ural (2014) identify 33 cases (typically island nations or countries

in Sub-Saharan Africa) for which GDP estimates from the WDI and the PWT differ by

over 25 percent. This issue goes beyond GDP data: exporters and importers record the

same bilateral trade flows differently (Linsi, Burgoon and Mügge, 2023), and a comparison

of export data from two sources — the International Monetary Fund (IMF) and the United

Nations Commodity Trade Statistics (Comtrade) — concludes that “the data are neither

comparable nor in a number of cases, correlated” (Amin Gutiérrez de Piñeres, 2006, 35).

Foreign aid (Michaelowa and Michaelowa, 2011; Weikmans and Roberts, 2019), foreign direct
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investment (Kerner, 2014), and population data (Devarajan, 2013) face similar measurement

issues.

Previous research has identified four primary sources of measurement uncertainty. The

first is statistical capacity, or lack thereof. International organizations do not compile statis-

tics. The World Bank, for example, “was never involved in actual basic data collection for the

national accounts” (Ward, 2004, 98). Instead, it disseminates data from national statistical

agencies, which report data in line with a global standardization framework — the System

of National Accounts (SNA) — developed by the International Comparison Program (ICP)

to enable cross-country comparisons. Many national statistical agencies are underfunded,

understaffed, use outdated methods, and do not coordinate their statistical activities (De-

varajan, 2013). Population figures tend to be extrapolated from the last census; the more

time has elapsed since the last census, the larger the uncertainty included in these extrap-

olations (Devarajan, 2013). As a result, statistical agencies either fail to report estimates

altogether or report inaccurate estimates, a problem that is particularly prevalent in Africa

(Jerven, 2010, 2013, 2018, 2019).

Measurement uncertainty can also exist for political reasons. Autocracies are less likely

to report policy-relevant data (Hollyer, Rosendorff and Vreeland, 2011), and when they do,

they tend to overstate annual growth rates (Magee and Doces, 2015; Mart́ınez, 2022), partic-

ularly at politically sensitive times (Wallace, 2014). In federations like Nigeria, states inflate

population figures to receive higher fiscal transfers from the federal government (Devarajan,

2013). Aid-dependent countries systematically underreport economic data to appear poorer

and attract more aid (Kerner, Jerven and Beatty, 2017). Even industrialized democracies

overstate how much climate aid they provide — particularly when domestic constituencies

value environmental objectives (Michaelowa and Michaelowa, 2011) — and misrepresent

public finance statistics in order to abide by the rules of the European Union, as Greece did

(Alt, Lassen and Wehner, 2014).

A third source of uncertainty is the ICP standardization framework. Every five to ten
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years, the ICP surveys how much the same basket of goods costs in different currencies,

using this information to construct purchasing power parity (PPP) rates that enable the

comparison of living standards across borders. Until 1996, these price surveys collected

data only for the developed world, making considerably less accurate extrapolations for the

developing world (Deaton and Aten, 2017). ICP rounds in 2005, 2011, and 2017 suffer from

smaller uncertainty because they include China and other large developing countries, but

still disagree with each other due to differences in relative prices, consumption patterns,

region-specific PPP adjustments, and accounting or reporting practices (Deaton and Aten,

2017).

Figure 3: Curent GDP of the Democratic Republic of the Congo and Georgia, 1990–2020
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These boxplots present the distribution of current GDP estimates from 1990 to 2020 for (A) the Democratic
Republic of the Congo and (B) Georgia, using data drawn from the 109 WDI releases from April 1994 to
December 2022. Four WDI releases reported a GDP of zero for the Democratic Republic of the Congo in
1990. In addition, all 32 releases before July 2014 reported a GDP of 4.3 billion for 2000, a figure revised
to 19.1 billion in July 2014. Georgia’s GDP in 1990 was reported as 12.1707 million in some vintages and
12.1707 billion in others. Section 3 discusses the data in more detail.

Humans are a final source of measurement uncertainty: they can commit coding errors,

selectively exclude available data, or weigh summary statistics inappropriately (Herndon,
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Ash and Pollin, 2014). As Figure 3 shows, four different WDI releases (in July, August,

October, and November 2016) reported the GDP of the Democratic Republic of the Congo

in 1990 as zero; two other releases (in December 2016 and April 2017) reported this value

as missing. Relatedly, Georgia’s 1990 GDP — reported to be around 12.1707 billion until

April 1998 — “lost” three digits in the April 1999 and April 2000 vintages, shrinking to

12.1707 million before regaining its billionaire status in April 2003.2 “Losing” three digits is

not the product of low statistical capacity, political interference, or faulty standardization;

it is the product of human error, as is a GDP of zero. The December 2021 update contains a

similar error for Myanmar, illustrated in Figure 4. According to all other available vintages,

Myanmar’s GDP in 2011 ranged from 54 to 59 billion current US dollars. However, the

December 2021 release reported a figure over 100 times as high: 7.899 trillion. The February

2022 update corrected this mistake. But individuals who downloaded any WDI data in the

preceding two months likely retrieved wrong numbers, as all GDP-based variables (including

constant GDP, GDP in PPP, GDP per capita, and GDP growth) use current GDP as a

starting point for calculations.

These issues are not unsolvable. With support from the Danish International Develop-

ment Agency and the IMF, the Ghana Statistical Service released new GDP estimates in

2010: after updating the base year from 1993 to 2006 and including new data disaggre-

gated by economic sector, it concluded that the country’s GDP was 60.3 percent larger than

previously thought (Jerven and Ebo Duncan, 2012). Political leadership can also make a dif-

ference: Greece revised its finances after Prime Minister George Papandreou came to power

in 2009 and requested help from Eurostat and the IMF (Aragão and Linsi, 2022). These

revisions increased the accuracy of Ghanaian and Greek statistics, but also reduced their

reliability, given the gap between old and new estimates. Finally, data transparency and

replication can identify human errors. A replication exercise led Herndon, Ash and Pollin

(2014) to identify serious miscalculations in a famous study connecting higher sovereign debt

2Georgia only gained formal independence from the Soviet Union in December 1991, but its WDI coverage
begins in 1990.
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Figure 4: Current GDP of Myanmar, 1990–2020
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These boxplots present the distribution of current GDP estimates from 1990 to 2020 for Myanmar, using
data drawn from the 109 WDI releases from April 1994 to December 2022. The December 2021 WDI release
(in pink) is included in (A), but not in (B). As the different y-axes show, the December 2021 release was an
outlier, reporting exceptionally high values for the entire time series. Section 3 discusses the data in more
detail.

to lower GDP growth.

Revisions are consequential for both policy and research. In 2010, the World Bank

updated Ghana’s classification from low income to lower middle income economy, and the

government suddenly became eligible to apply for loans from the International Bank for

Reconstruction and Development. Greece’s revisions had a less fortunate effect: the country

was downgraded by credit rating agencies and requested multiple IMF and EU loans to

avoid default. Given the data discrepancies across WDI and PWT vintages (Goes, 2023;

Johnson et al., 2013), replacing one vintage with another can also significantly alter published

research findings. Overall, low statistical capacity, deliberate political choice, imperfect

standardization practices, and human error lead to heterogeneity in data quality: researchers

can make more accurate and precise inferences about some countries and years than others.
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3 Predicting Measurement Uncertainty

3.1 GDP Data

The WDI first appeared as a printed annex to the 1978 World Development Report and

became a standalone publication in 1997 (World Bank, 2018). In 2018, the World Bank

discontinued print reports and launched a data portal that includes the WDI Database

Archives, providing 109 available electronic WDI releases from 1994 to 2022.3 I focus on the

indicator GDP in current US dollars (ID NY.GDP.MKTP.CD), defined as “the sum of gross

value added by all resident producers in the economy.”4 This indicator enables comparisons

across vintages, though not across countries or over time, as it does not make PPP or

inflation adjustments.5 I examine GDP in billions, rounded to two decimal places to filter

out the noise. Zimbabwe’s 1990 GDP, for example, was reported as 8,783,816,666 dollars in

all vintages from April 2011 to November 2014 and 8,783,816,700 dollars in all vintages since

December 2014. This difference of 34 dollars is negligible; accounting for it would increase

computational demands without any substantive gain in meaning.

I use this indicator to generate four outcomes that capture different degrees of mea-

surement uncertainty; Figure 5 shows their distribution. The first outcome measures data

coverage, whereas the remaining three measure data comparability across vintages. Consider

each observation xitk for country i, year t (the reported date), and WDI release k (the report-

ing date), with N = 433, 803. The first outcome is missingness, coded one if xitk is missing

from WDI release k and zero otherwise. Of all observations, 15,160 (about 3.5 percent) are

3Though all releases since 1989 are available, the variable of interest is missing from all releases before
1994, and the WDI released no data updates in 1996.

4GDP is “converted from domestic currencies [into US dollars] using single year official exchange rates.”
In the rare cases “where the official exchange rate does not reflect the rate effectively applied to actual foreign
exchange transactions,” the World Bank applies an alternative exchange rate, the so-called DEC conversion
factor.

5GDP, PPP (current international $) (ID NY.GDP.MKTP.PP.CD) allows for comparisons across countries,
but not across vintages, as the PPP conversion factor changes from one ICP round to another. GDP in
constant US dollars (ID NY.GDP.MKTP.KD), calculated using the GDP deflator (the ratio of GDP in current
local currency to GDP in constant local currency) to account for inflation, allows for comparisons over time,
but not across vintages.
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Figure 5: Distribution of the Outcome Variables
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These histograms show the distribution of the four outcomes of interest. According to (A), 3.5 percent of
all observations are missing. According to (B), 9.9 percent of all observations record a change from xitk

to xitk+1. According to (C), 9.3 percent of all non-missing observations are outliers, as defined by the
Tukey rule. Finally, (D) shows the distribution of the z-score, indicating that 96 percent of all non-missing
observations fall within two standard deviations of the mean.

missing. The second outcome is change, coded one if xitk is different from xitk+1 (that is,

if the value reported for country i and year t differs between two consecutive vintages) and
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zero otherwise. There are 42,814 instances of change (9.9 percent).

Turning to the non-missing values (N = 418, 643), the third outcome indicates the pres-

ence of an outlier, coded one if xitk falls outside of the typical ranges for country i and

year t. To identify outliers, the Tukey rule (also employed in the construction of boxplots)

leverages the Interquartile Range (IQR), which is the difference between the third quartile

(Q3) and the first quartile (Q1); xitk is an outlier if it falls below Q1− 1.5× IQR or above

Q3 + 1.5× IQR. About 9.3 percent of all non-missing observations are outliers (39,035).

The fourth outcome also focuses on non-missing values and operationalizes uncertainty

as distance from the mean: how many standard deviations is a non-missing observation away

from its country-year mean µij? This outcome corresponds to the z-score,

zitk =
xijk − µij

σij

,

which divides the raw difference between xitk and µij by the country-year standard de-

viation, σij. This metric indicates a direction (whether an observation is above or below

the mean) and standardizes the data (allowing for meaningful comparison between coun-

tries). While the z-score ranges from –10.34 to 10.34, about 96 percent of all non-missing

observations fall within two standard deviations of the mean.

3.2 Modeling Strategy

This study is exploratory. I do not know the nature of the underlying data generating pro-

cess and do not expect one predictor to matter more than others in explaining measurement

uncertainty. Absent a strong theory driving the selection of predictor variables, tree-based

models tend to outperform linear regression. Researchers can include any number of vari-

ables; trees choose relevant predictors and filter out irrelevant ones. These models make

no assumptions about functional form and are robust to including predictors with outliers

or long-tailed distributions. Instead of using listwise deletion or imputation, the algorithm6

6See Appendix F for a description of H2O, the machine learning platform used to implement this algorithm,
including a discussion of the chosen hyperparameters.
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interprets missing predictor values as a separate category containing information, assuming

that values are missing not at random. This is desirable, as missing predictors could be re-

lated to measurement uncertainty in GDP data. As with linear regression, tree-based models

do not identify causal relationships; they merely show whether variation in one indicator is

associated with variation in another indicator.

Both classification trees (with categorical outcomes) and regression trees (with continuous

outcomes) assume that all observations are part of one covariate space (Montgomery and

Olivella, 2016). The model splits this covariate space into non-exhaustive and overlapping

regions, each corresponding to a unique covariate combination, and makes one prediction

for all observations falling within one region. To ensure that the data are not fragmented

too quickly, with too many regions, the model grows trees through sequential binary splits

(rather than multiway splits) and follows the best split at each step, without looking ahead.

Since a single tree can be sensitive to data changes, most researchers grow tree ensem-

bles to reduce variance. Two tree-based ensemble models — random forests and gradient

boosting machines (GBMs) — tend to outperform other tree-based or non-tree-based models

in predicting US Supreme Court rulings (Kaufman, Kraft and Sen, 2019), civil war onset

(Muchlinski et al., 2016), allocation of government expenditures (Funk, Paul and Philips,

2022), regime type (Weitzel et al., 2023), and other “complicated” data generating pro-

cesses with nonlinearities, discontinuities, additive terms, or interactions (Montgomery and

Olivella, 2016). Random forests are forests because they build an ensemble of trees and

random because each binary split of a tree makes predictions using a random sample of

covariates, aggregating the results based on the prediction made by most trees. Even if

there is a strong predictor in the dataset, not all trees use this strong predictor in the first

split. The resulting trees are less correlated with each other, with more reliable average

results (Breiman, 2001). While random forests build trees simultaneously, GBMs build trees

sequentially, with each new tree designed to rectify the mistakes of its predecessors. This

sequential refinement, driven by gradient descent optimization, enables GBMs to capture
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complex relationships in the data, though it also risks overfitting (Cook, 2017, 147). I use

GBMs to understand how GDP figures vary across different WDI vintages and present the

results of random forests, LASSO, and ridge regressions in the appendix.

Following conventions in machine learning, I split the data into training, validation, and

test sets accounting for 60, 20, and 20 percent of all observations, respectively, stratified by

World Bank income group to ensure that all income groups are represented proportionally

across all sets.7 One concern is that unintentional information might leak across related ob-

servations. For instance, the model might use information from Zimbabwe’s future to predict

Zimbabwe’s past (temporal leakage), or it might use information from Zimbabwe in 1990 to

predict outcomes for other countries in 1990 (spatial leakage). Either way, the model would

return predictions that are too good to be true (Kaufman et al., 2012). To address leakage, I

use group-based splitting and leave-one-group-out cross-validation (LOGOCV). Group split-

ting means that all observations for a specific country are assigned to the same set, such that

Zimbabwe’s future cannot be used to predict Zimbabwe’s past. LOGOCV means that I train

each iteration of the model on the entire training set minus one country, then evaluate how

well the model generalizes to the left-out country. After iterating through all countries, the

algorithm builds a final model for the entire training set, without partitions, comparing this

model’s performance to the average performance of the cross-validation models. Based on

several metrics, the algorithm selects the model that best explains variation in the training

data while making accurate predictions for the new data. This helps ensure that the final

model does not overfit to the patterns specific to Zimbabwe.

I use the training and validation sets to iteratively calibrate the model, adjusting hyper-

parameters like the number of trees or the number of splits per trees (see Appendix F). Once

I am satisfied with the results, I use the chosen model to make out-of-sample predictions for

7The World Bank classifies countries into four groups: low income, lower middle income, upper middle
income, or high income. Based on the classification for the 2024 fiscal year, these groups account for
approximately 14.7, 27.7, 25.8, and 31.3 percent of the dataset, respectively. The remaining 0.5 percent of
observations correspond to Venezuela, which has been temporarily unclassified since July 2021 due to lack
of revised national accounts statistics.
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the test set. This final evaluation on unseen data provides a reliable measure of the model’s

predictive capability and its real-world applicability.

3.3 Predictors

Though tree-based models can handle several predictors, there is a trade-off: the model

should include enough predictors to capture important patterns without being overly com-

plex and fitting noise. With this in mind, I collect 37 variables that plausibly explain

measurement uncertainty. Some of these variables are political (regime type, election year,

Polyarchy scores, ideology of the executive), others indicate the occurrence of specific events

(like elections, financial crises, or climate disasters), and others, still, are V-Dem indices

(Coppedge et al., 2023) measuring freedom of academic expression or bureaucratic remu-

neration (see Appendix C). I restrict the analysis to all values of t from 1990 to 2020, as

different data sources cover different periods: while V-Dem includes all years since 1789,

the International Disaster Database (Centre for Research on the Epidemiology of Disasters,

2020) and the Mass Mobilization Protest Data (Clark and Regan, 2020) begin their coverage

in 1988 and 1990, respectively.

In addition to the 37 variables, models include a vintage identifier (Vintage ID) and

the difference between the reporting and reported years, k − t (Time Between Vintage and

Year). There is typically a two-year lag between the reporting year and the most recent

reported year. For example, GDP estimates for 2018, 2019, and 2020 were first available

in the February 2020, February 2021, and February 2022 WDI releases, respectively. Thus,

estimates for year t only enter the analysis at year t+ 2.

The main models include all predictors for year t. Additional models in Appendix E

include each variable twice, both for t and for k, as current circumstances might moti-

vate retroactive changes to older data. For example, the Greek government revised exist-

ing statistics after Prime Minister Papandreou came to power in 2009, so Greek statistics

with k ⩾ 2009 could be different from previous vintages. Still, these cases are rare. Since
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reporting-year characteristics strongly correlate with reported-year characteristics, their in-

clusion leads to unstable and redundant models with worse fit. Variable importance plots

confirm that the reported year matters most.

Other robustness checks in Appendix E control for economic and demographic predictors

(such as FDI flows, inflation, unemployment, population, or urbanization rates). Several of

these predictors are also reported by the WDI, strongly correlate with GDP data, and likely

suffer from the same measurement uncertainty.

3.4 Results

Missing, Change, and Outlier are binary outcomes, and most observations belong in one

class: 96.5 percent are not missing, 83 percent record no change, and 89.5 percent of all

non-missing observations are not outliers. For each model, I thus follow Muchlinski et al.

(2016) and balance the majority and minority classes in the training set. Figure 6 presents

the 37 predictors, plus Vintage ID and Time Between Vintage and Year, ranked by their

importance for each outcome.

In Figure 6, Panel (A) reinforces Hollyer, Rosendorff and Vreeland’s (2014, 417) finding

that WDI data disclosure is a “political decision, not simply a reflection of bureaucratic

capacity.” The variable that explains the most variation in missingness is, by far, the electoral

democracy index Polyarchy, ranging from zero (low) to one (high). Data are less likely to

be missing for countries with higher Polyarchy scores. Tree-based models do not identify

causal relationships, so it is inaccurate to say that regime type causes missingness. But this

aligns with existing causal evidence that autocrats are less likely to report GDP information

(Hollyer, Rosendorff and Vreeland, 2014) and often overstate GDP growth rates (Magee

and Doces, 2015; Mart́ınez, 2022). In addition, data are more likely to be missing when

the Political Corruption Index is high or for newly independent countries, like Timor-Leste,

Montenegro, and South Sudan (founded in 2002, 2006, and 2011, respectively), which are

still in the process of developing institutions that collect and disseminate high-quality data.
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Figure 6: Variable Importance Plot (Training Set)
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This figure shows the relative importance of each predictor, by outcome. The least important predictor
equals zero, while the most important predictor equals one. The importance of each predictor is a function
of whether it was selected to create a binary split, and if so, how much the squared error (averaged over all
trees) increased or decreased because of said split.

And there is evidence that the WDI backfills data: the larger the gap between reporting and

reported year, k − t, the less likely estimates will be missing. In contrast, economic crises

(banking, debt, or currency), election years, and coups are not strongly associated with

variation in coverage and nor is OECD membership, suggesting that wealthier countries are

not intrinsically more likely to disseminate data.
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Even when data are not missing, the 109 available WDI releases often provide conflicting

information. As Panels (B), (C), and (D) show, the other three outcomes — which examine

the comparability of data across vintages — share the same two top predictors: Vintage ID

and Time Between Vintage and Year. To illustrate these predictions, Figure 7 presents two

partial dependence plots for the second model. These plots show how variation in Vintage

ID and Time Between Vintage and Year relates to variation in the outcome Change, without

assuming causality. Across all models, Vintage ID indicates that the first 30 vintages (from

April 1994 to December 2011) are associated with more frequent change and outliers than the

subsequent ones, which follow newer ICP benchmarks that include more precise information

for developing countries. For example, Zimbabwe’s 1990 GDP is more likely to depart from

previous values or be an extreme value in the April 1994 WDI than in the April 2014 WDI.

Time Between Vintage and Year indicates that data become more comparable as k − t

increases, regardless of vintage: changes and extreme values become less frequent, whereas

the z-score nears zero. Put differently, WDI vintages usually coalesce around one value over

time: in the April 2014 WDI, information about Zimbabwe’s 2012 GDP is more likely to

depart from previous values or be an extreme value than information for Zimbabwe’s 1990

GDP. Since researchers do not know Zimbabwe’s true GDP in 1990, they cannot say whether

more recent WDI vintages are closer to the truth, but they can say that these vintages are

less likely to change or report extreme values, instead converging to the mean.

Other than Vintage ID and Time Between Vintage and Year, the most important pre-

dictors of variation in Change, Outlier, and Z-Score are the same: higher state capacity or

Polyarchy scores and lower values of the political corruption index are associated with more

consistent and comparable GDP data. As before, natural disasters, economic crises, and

coups explain practically no variation in the outcome of interest.

In sum, data coverage (measured as Missing) is best predicted by a mix political will

and state capacity. Withholding data is often a political choice: data coverage tends to

decline in contexts of authoritarianism and widespread corruption. Beyond political choices,
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Figure 7: Partial Dependence Plots, Outcome: Change (Training Set)

(A) Predictor: Vintage ID (B) Predictor: Time Between Vintage and Year
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These partial dependence plots illustrate the relationship between a specific predictor — Vintage ID in Panel
(A), Time Between Vintage and Year in Panel (B) — and the predicted outcome Change while holding all
other predictors constant.

low state capacity and recent independence pose a hard barrier to a country’s ability to

disseminate information. In contrast, data comparability (measured as Change, Outlier, and

Z-Score) is less tied to country-specific characteristics. Intuitively, one would expect low-

income countries to produce less comparable data. But OECD membership is not a strong

predictor of variation in any outcome of interest, suggesting that different measurements of

high-income countries are just as likely to be comparable. Rather, low data comparability

is a technical problem best predicted by changes in the ICP standardization framework or

simply the passage of time. Individual measurements become more reliable as they age,

though it is impossible to say whether they get any closer to the truth.

3.5 Assessing Model Performance

My primary goal is to uncover relationships between variables, not optimize predictive power,

but I assess the quality of the out-of-sample predictions as a final step. For the three
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binary variables, I follow Muchlinski et al. (2016) in presenting separation plots and Receiver

Operating Characteristic (ROC) curves for the test sets. Three separation plots in Figure

8 organize the predicted probabilities for each observation in ascending order, highlighting

whether each observation corresponds to an actual event: missingness, change, or outlier

(Greenhill, Ward and Sacks, 2011). These plots also provide information about the predicted

probabilities (a line) and the expected number of events (a triangle). When the model makes

perfect predictions, the plot showcases a clear separation between the zeroes and ones: lower

probabilities are always associated with no event (left of the triangle) and higher probabilities

are always associated with an event (right of the triangle). Deviations from this ideal pattern

highlight areas where the model struggles to distinguish between the classes.

While the model predicting coverage has the best fit, some events cannot be predicted on

a systematic basis. As an illustration, consider New Zealand’s 2012 GDP, which enters the

analysis in 2014. Its predicted probability of missingness is zero for all vintages, a correct

prediction for all but one vintage: December 2015. The February 2016 WDI explains: “Cor-

rections have been made to ... GDP-related data for New Zealand from 2012-15” (World

Bank, 2023). New Zealand’s 2012 GDP is missing from the December 2015 WDI for idiosyn-

cratic reasons that the first model is unable to predict; the second model is similarly unable

to predict the resulting changes.8

Figure 9 presents ROC curves for the three models with binary outcomes. In each

panel, the y-axis represents the true positive rate (the proportion of missing observations

that are correctly classified as missing), whereas the x-axis represents the false positive rate

(the proportion of non-missing observations that are incorrectly classified as missing). A

random model would produce a diagonal line from the bottom-left corner to the top-right

corner, whereas a perfect classifier would achieve a true positive rate of 1 and a false positive

rate of 0, corresponding to the top-left corner of the plot. These figures are paired with a

performance metric, the Area Under the ROC Curve (AUC), which ranges from 0 to 1, with

8Random forests, LASSO, and ridge regressions face similar issues (see Appendix E).
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Figure 8: Separation Plots (Test Set)

(A) Outcome: Missing

(B) Outcome: Change

(C) Outcome: Outlier

Separation plots organize the predicted probabilities for each observation in ascending order, highlighting
whether each observation corresponds to an actual event: (A) missingness, (B) change, or (C) outlier.
Separation plots also provide information about the predicted probabilities (a line) and the expected number
of events (a triangle). If the model makes perfect predictions, the plot will showcase a clear separation
between the zeroes and ones: lower probabilities (in white) will always be associated with no event (left of
the triangle) and higher probabilities (in blue) will always be associated with an event (right of the triangle).

0.5 denoting random guessing and 1 denoting a perfect classifier. The AUC values (ranging

from 0.854 to 0.932) indicate that all three models make good out-of-sample predictions: they

can typically distinguish between true positives and false positives, between observations
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Figure 9: Receiver Operating Characteristic Curves (Test Set)

(A) Outcome: Missing (B) Outcome: Change
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(C) Outcome: Outlier
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These Receiver Operating Characteristic (ROC) curves illustrate the trade-off between the true positive rate
and the false positive rate across different probability thresholds. In each curve, the y-axis represents the
true positive rate (the proportion of missing observations that are correctly classified as missing), whereas
the x-axis represents the false positive rate (the proportion of non-missing observations that are incorrectly
classified as missing). A random model would produce a diagonal line from the bottom-left corner to the
top-right corner, whereas a perfect classifier would achieve a true positive rate of 1 and a false positive rate
of 0, corresponding to the top-left corner of the plot. These figures are paired with the Area Under the
ROC Curve (AUC), which ranges from 0 to 1, with 0.5 denoting random guessing and 1 denoting a perfect
classifier. For the ROC curves above, the corresponding AUC values are (A) 0.932, (B) 0.878, and (C) 0.854,
indicating that all models make good out-of-sample predictions.
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that are truly missing and observations that are not. In Appendix D, I present additional

performance metrics confirming that these models do a good — if not perfect — job of

predicting missingness, change, and outliers.

Figure 10: Predicted Versus Observed Values (Test Set)
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This figure plots the observed values on the x-axis against the predicted values on the y-axis. Each point
represents an observation, and the diagonal line represents perfect predictions. The closer the points are to
the diagonal line, the better the model’s predictions align with the actual values.

Since the fourth model has a continuous outcome, I use a different metric to assess its

performance. The R2 indicates the correlation between predicted and observed values, from

0 (no correlation) to 1 (complete correlation). The R2 for the test set is 0.221: only 22.1

percent of the out-of-sample variation in z-scores can be systematically explained. To better

grasp this statistic, Figure 10 plots the observed values on the x-axis against the predicted

values on the y-axis. Each point represents an observation, and the diagonal line represents

perfect predictions. The closer the points are to the diagonal line, the better the model’s

predictions align with the actual values. The model consistently makes predictions that

are up to two standard deviations above or below the mean, an accurate prediction for 96

percent of all non-missing observations. Models 3 and 4 jointly indicate that the predictors
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can systematically identify extreme values but tend to underestimate their magnitude. As a

result, models are unable to correctly predict z-scores of –10.34 (for Argentina’s 1991 GDP,

according to the April 1999 WDI) or 10.34 (for Zambia’s 1990 GDP, according to the April

1994 WDI).

4 Conclusions

Political scientists have long debated how to measure abstract concepts like democracy

(Munck and Verkuilen, 2002; Giannone, 2010; Coppedge and Gerring, 2011) without devot-

ing as much attention to the measurement of seemingly concrete concepts. GDP is generally

considered a valid and reliable measure of national wealth, but national accounts data are

not fixed data points: they are preliminary estimates that are constantly revised, and revi-

sions might provide conflicting information. GDP is the foundation to calculate a number

of variables in social science research, including foreign aid, foreign direct investment, and

trade flows. Even when GDP is “just” a control variable, its inclusion might affect the sam-

ple size and shape researchers’ conclusions about the relationship between other variables

(Goes, 2023).

Two common solutions to the problem of missing data are listwise deletion (excluding

cases with missing values) and multiple imputation (generating multiple plausible values

for the missing observations). Both provide unbiased estimates when missingness cannot

be predicted by observed or unobserved factors; multiple imputation also provides unbiased

estimates when missingness can be predicted by observed factors. But missingness in GDP

data cannot be fully predicted by observed factors, as I showed. Researchers do not know

the true data generating process underlying national accounts data; there are significant

regional disparities in statistical capacity, and even where statistical capacity is high, there

might be political interest in reporting biased (or no) data. GDP is missing not at random,

so both multiple imputation and listwise deletion would be biased (Pepinsky, 2018). The
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same applies to other data issues: a GDP of zero for the Democratic Republic of the Congo

is clearly wrong, but deleting such observation would generate bias.

There are three straightforward ways to address the potential influence of discrete er-

rors. The first solution is resampling. While traditional bootstrap methods involve random

sampling with replacement from the entire dataset, a leave-one-group-out bootstrap can sys-

tematically exclude one country at a time during resampling iterations, allowing researchers

to assess whether results are robust to omitting individual countries. Someone working with

the December 2021 WDI might not be aware of the extreme values for Myanmar but will at

least confirm that their empirical results are not driven by such outliers.

Second, just as it is common to present robustness checks with alternative measures of

regime type (like Polity or Polyarchy), researchers can estimate separate models with alter-

native measures of GDP, exports, foreign aid, foreign direct investment, or economic growth

from different sources and vintages. To facilitate this, the online appendix of this study

provides GDP data (in both current and constant dollars) for all available WDI vintages

since 1994, consolidated into one single file. Alternative measures are particularly relevant

for studies focusing on non-democracies, recently independent countries, and settings with

high corruption and low state capacity. Under these circumstances, it is safe to assume that

national accounts data are flawed: observations are more likely to be inconsistent or missing.

As Herrera and Kapur (2007, 381) state, “the penalties for using low-quality data are

small.” But at the very minimum, researchers should be transparent about the data origins

and research implications, acknowledging that the choice of one source or vintage over an-

other can affect the empirical conclusions. In particular, researchers should use recent data

releases (recent values of k). Newer vintages, which rely on more recent ICP rounds, provide

more precise information for developing countries and are more consistent, as my analysis

shows. Researchers should also consider dropping recent years (recent values of t) from the

analysis, if only in robustness checks. For example, GDP estimates for 2018, 2019, and 2020

were first available in the February 2020, February 2021, and February 2022 WDI releases,
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respectively. Someone using the February 2022 WDI might not want to include 2019 and

2020 in their analysis, as the numbers reported for these years are preliminary and will likely

change in subsequent data releases. These revisions can happen for good reason — perhaps

countries are improving their data collection process and correcting previous mistakes, or

the World Bank is refining its data standardization tools. Either way, scholars who elimi-

nate more recent observations ensure that their empirical results are not just the product of

unstable measurements that have not yet coalesced around a single value.
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A Countries Included in the Analysis

Afghanistan, Albania, Algeria, Angola, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas,

Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina,

Botswana, Brazil, Brunei Darussalam, Bulgaria, Burkina Faso, Burundi, Cabo Verde, Cambodia, Cameroon,

Canada, Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo, Costa Rica, Cote

d’Ivoire, Croatia, Cuba, Cyprus, Czech Republic, Democratic Republic of the Congo, Denmark, Djibouti,

Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia,

Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea,

Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy,

Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kiribati, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho,

Liberia, Libya, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania,

Mauritius, Mexico, Moldova, Mongolia, Montenegro, Morocco, Mozambique, Myanmar, Namibia, Nepal,

Netherlands, New Zealand, Nicaragua, Niger, Nigeria, North Korea, North Macedonia, Norway, Oman,

Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania,

Russia, Rwanda, Saint Vincent and the Grenadines, Samoa, São Tomé and Pŕıncipe, Saudi Arabia, Senegal,

Serbia, Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands, Somalia, South Africa, South Korea,

South Sudan, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thai-

land, Timor-Leste, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine,

United Arab Emirates, United Kingdom, United States, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam,

Yemen, Zambia, Zimbabwe.

B Additional Descriptive Information

To give readers a clearer grasp of the measurement uncertainty in the data, Figure B.1 presents GDP data

for two large African oil producers (Angola and Sudan) and two small African economies (Comoros and

Guinea-Bissau), whereas Figure B.2 does the same for two former Soviet republics (Armenia and Moldova).

More generally, Figure B.3 shows the distribution of the WDI variable GDP in constant US dollars (ID

NY.GDP.MKTP.KD), which is used to generate four outcomes: Missing, Change, Outlier, and Z-Score.
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Figure B.1: Current GDP of Angola, Sudan, Comoros, and Guinea-Bissau, 1990–2020
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These boxplots present the distribution of current GDP estimates for (A) Angola, (B) Sudan, (C) Comoros, and (D) Guinea-
Bissau from 1990 to 2020, using data drawn from the 109 WDI releases from April 1994 to December 2022. Section 3 discusses
the data in more detail.
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Figure B.2: Current GDP of Armenia and Moldova, 1990–2020
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These boxplots present the distribution of current GDP estimates for (A) Armenia and (B) Moldova from 1990 to 2020, using
data drawn from the 109 WDI releases from April 1994 to December 2022. Section 3 discusses the data in more detail.

Figure B.3: Distribution of the WDI Variable GDP in Constant US Dollars
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This histogram shows the distribution of the WDI variable GDP in constant US dollars (ID NY.GDP.MKTP.KD), which is used
to generate four outcomes: Missing, Change, Outlier, and Z-Score.
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C List of Predictors

In addition to Time Between Vintage and Year, the main analysis includes 37 predictors, listed in Table C.1 (along with their respective description,

coverage, and source). In robustness checks (see Appendix E.3), I include additional economic and demographic predictors (listed in Table C.2) that

are highly correlated with the outcome of interest, and thus likely suffer from the same measurement errors. For each source, I used the most recent

release as of 1 July 2023. I downloaded all WDI data using Vincent Arel-Bundock’s WDI package for R. As Figure C.1 shows, 3.7 percent of the data

are missing.

Table C.1: Main Predictors

Variable Description Coverage Source

Armed Conflict Was any armed conflict recorded? (yes = 1) 1939–2021 Gleditsch et al. (2002); Pettersson et al. (2021)

Autonomous Regions Are there autonomous regions? (yes = 1) 1970–2020 Cruz, Keefer and Scartascini (2021)

Banking Crisis Was there a banking crisis this year? (yes = 1) 1970–2017 Laeven and Valencia (2020)

Biological Disaster Occurrence of a biological (epidemic) disaster (yes = 1) 1988–2021 Centre for Research on the Epidemiology of

Disasters (2020)

Bureaucratic Remuneration To what extent are state administrators salaried employ-

ees? (none = 0, small share = 1, half = 2, substantial

number = 3, all = 4)

1789–2022 Coppedge et al. (2023)

Census Year Was there a national census in this year? (yes = 1) 1789–2020 Coppedge et al. (2023)

Civil War Was there a civil war this year? (yes = 1) 1946–2018 Marshall (2019)

Climate Disaster Occurrence of a climatological (drought, wildfire), mete-

orological (storm, extreme temperature), or hydrological

(flood, landslide) disaster (yes = 1)

1988–2021 Centre for Research on the Epidemiology of

Disasters (2020)

Coup Did a coup d’etat occur? (yes = 1) 1789–2020 Coppedge et al. (2023)
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Coding Error Coded 1 for all Myanmar observations in the December

2021 WDI as well as for the Democratic Republic of the

Congo–1990 observation in the July, August, October,

and November 2016 WDI

1990–2022 Own Coding

Currency Crisis Was there a currency crisis this year? (yes = 1) 1970–2017 Laeven and Valencia (2020)

Debt Crisis Was there a debt crisis this year? (yes = 1) 1970–2017 Laeven and Valencia (2020)

Executive Tenure So Far (Years) Number of years that a leader has been in power during

their current tenure period

1950–2020 Bell, Besaw and Frank (2021)

Executive Was Elected Executive leader was elected to office (yes = 1) 1950–2020 Bell, Besaw and Frank (2021)

Freedom of Academic Expression Is there academic freedom and freedom of cultural expres-

sion related to political issues? (yes = 1)

1789–2022 Coppedge et al. (2023)

Geophysical Disaster Occurrence of a geophysical (earthquake, volcanic activ-

ity) disaster (yes = 1)

1988–2021 Centre for Research on the Epidemiology of

Disasters (2020)

IMF Program Participation in an IMF program (yes = 1) 1978–2022 Kentikelenis, Stubbs and King (2016), IMF

MONA Database

Island Is the country an island? (yes = 1) 1990–2020 Own coding

Land Area Land area (sq. km) 1961–2020 WDI

Leader Education Leader’s level of education summarized in eight categories 1948–2020 Dreher et al. (2020)

Left Executive Party orientation of the executive with respect to eco-

nomic policy (left = 1)

1970–2020 Cruz, Keefer and Scartascini (2021)

Military Direct or indirect military regime (yes = 1) 1950–2020 Bell, Besaw and Frank (2021)

Monarchy Monarchy (yes = 1) 1950–2020 Bell, Besaw and Frank (2021)

Number of Protests Number of recorded protests 1990–2020 Clark and Regan (2020)

OECD Membership Membership in the Organization for Economic Co-

Operation and Development

1950–2020 Dreher et al. (2022)
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Oil Discovery Discovery of a giant, megagiant, or supergiant oil or gas

field (yes = 1)

1868–2020 Horn (2014); Cust, Mihalyi and Rivera-

Ballesteros (2021)

Parliamentary Election Year Did a legislative or constituent assembly election take

place? (yes = 1)

1789–2022 For Brunei and Belize, Cruz, Keefer and

Scartascini (2021); for all other countries,

Coppedge et al. (2023)

Political Corruption Index How pervasive is political corruption? (low = 0, high =

1, on an interval scale)

1789–2022 Coppedge et al. (2023)

Polity Revised combined Polity score, from –10 (hereditary

monarchy) to +10 (consolidated democracy)

1800–2018 Marshall and Gurr (2020)

Polyarchy Electoral democracy index 1789–2022 Coppedge et al. (2023)

Post-Soviet State Former Republic of the Union of Soviet Socialist Re-

publics

1990–2022 Own coding

Presidential Democracy Presidential democracy (yes = 1) 1950–2020 Bell, Besaw and Frank (2021)

Presidential Election Year Did a presidential election take place? (yes = 1) 1789–2022 For Brunei and Belize, Cruz, Keefer and

Scartascini (2021); for all other countries,

Coppedge et al. (2023)

State Capacity Estimate of state capacity by Hanson/Sigman 1960–2015 Hanson and Sigman (2021)

Statistical Agency Is there a national statistical agency? (yes = 1) 1789–2022 Coppedge et al. (2023)

Tax Haven Is this state considered a tax haven? (yes = 1) 1983–2020 US Department of Treasury, via Graham et al.

(2018); Graham and Tucker (2019)

Years Since Independence Most recent date of foundation, independence or reunifi-

cation

751–2022 Own coding

7



Table C.2: Additional Predictors

Variable Description Coverage Source

Agriculture (% GDP) GDP, share of value added by kind of economic activity:

agriculture, hunting, forestry, fishing

1970–2021 UNCTAD

Central Government Debt (%

GDP)

Central government debt, share of GDP 1950–2020 IMF

Diversification Index Merchandise: product diversification index of exports 1995–2021 UNCTAD

Fertility Rate Fertility rate, total (births per woman) 1960–2021 WDI

Foreign Aid Net official development assistance and official aid re-

ceived (current US dollars)

1960–2021 WDI

Imports (% GDP) Imports of goods and services, share of GDP 1970–2021 UNCTAD

Income Share Top 10% Share of pre-tax national income held by the top 10% 1820–2021 World Inequality Database

Industry (% GDP) GDP, share of value added by kind of economic activity:

industry

1970–2021 UNCTAD

Inflation Inflation, consumer prices (annual %) 1960–2022 WDI

Inward FDI, Flows (% GDP) Inward foreign direct investment flows, share of GDP 1970–2021 UNCTAD

Inward FDI, Stock (% GDP) Inward foreign direct investment stock, share of GDP 1970–2021 UNCTAD

KAOPEN Normalized Chinn-Ito index, ranging from zero to one 1970–2020 Chinn and Ito (2006)

Military Expenditure Per Capita Military expenditure per capita, in current US dollars 1949–2022 SIPRI Military Expenditure Database

Service (% GDP) GDP, share of value added by kind of economic activity:

service

1970–2021 UNCTAD

Tax Revenue (% GDP) Total tax revenue, excluding social security contributions,

share of GDP

1980–2021 Government Revenue Dataset

Total Population Population, total 1960–2022 WDI
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Unemployment Unemployment (% of total labor force), modeled ILO es-

timate

1991–2022 WDI

Urban Population Urban population (% of total population) 1960–2022 WDI
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Figure C.1: Missingness Map: Predictors, 1990–2020
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Figure C.2: Correlation Matrix: Predictors, 1990–2020
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D Main Models: Diagnostics

Table D.1: Performance Statistics, Main Models

Training Validation Test
Outcome: Missingness
AUC 0.9978304 0.7662927 0.9317631
AUCPR 0.9976250 0.2921954 0.3297605
Outcome: Change
AUC 0.9293748 0.8933057 0.8783696
AUCPR 0.9188185 0.4705715 0.4557725
Outcome: Outlier
AUC 0.7401503 0.7441611 0.7255345
AUCPR 0.2015761 0.2042317 0.172373
Outcome: Z-Score
R2 0.7123624 0.3019717 0.2208295
MSE 0.2561792 0.6169476 0.6936291

Table D.1 presents common performance metrics for the main models. I begin by discussing the three

models with binary outcomes (Missing, Change, and Outlier). In general, these models make good out-of-

sample predictions, as illustrated by the high Area Under the ROC Curve (AUC). This statistic ranges from

0 to 1, with 0.5 denoting random guessing and 1 denoting a perfect classifier. High AUC values indicate

good discrimination ability between the positive and negative classes: the models are effective at ranking

instances in terms of their likelihood of belonging to the positive class. Recall that the outcomes are very

imbalanced: most observations are not missing, do not change from one vintage to another, and are not

outliers. To address this issue, thee majority and minority classes are balanced in the training set, but not

the other sets. This is partly why all models perform best on the data they were trained on. To address

overfitting concerns, all models use early stopping and iterative tuning of hyperparameters.

Another important performance metric for classification tasks is the Area Under the Precision-Recall

(PR) Curve (AUCPR). This metric indicates the trade-off between precision — the missing observations

(true positives) the model correctly identified from all the observations it labeled as missing (true positives

plus false positives) — and recall — the missing observations (true positives) the model correctly identified

from all the actual missing cases (true positives the false negatives). Like AUC values, AUCPR values range

from 0 to 1, with 0.5 denoting random guessing and 1 denoting a perfect classifier. The AUCPR for all test

sets in Table D.1 is below 0.5, which might appear modest, but it is crucial to contextualize this result within

the unique challenges posed by the data. In cases of extreme class imbalance, achieving an AUCPR close to

1 is unrealistic, given how difficult it is to simultaneously optimize precision and recall. As the proportion

of positive instances diminishes, the denominator in the precision calculation becomes small, amplifying the

impact of false positives on the metric. Accordingly, the observed AUCPR values underscore the model’s

12



Figure D.1: Precision-Recall Curves, Main Models

(A) Outcome: Missing (B) Outcome: Change
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These panels present Precision-Recall (PR) curves for the test set. In each panel, the y-axis represents the precision, which
is the proportion of missing observations (true positives) the model correctly identified from all the observations it labeled as
missing (true positives plus false positives). The x-axis represents the recall, which is the proportion of missing observations
(true positives) the model correctly identified from all the actual missing cases (true positives plus false negatives). A random
model would produce a horizontal line, whereas a perfect classifier would score 1 for both precision and recall, corresponding
to the top-right corner of the plot.

ability to discern positive instances amid a predominantly negative class distribution. In such imbalanced

settings, where the random chance may hover around the proportion of positive instances (3.5, 9.9, and 9.3

percent, respectively), a model exhibiting substantial discrimination capability is promising. To illustrate
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this, Figure D.1 plots the AUCPR values for the three classification tasks; a random model would produce

a horizontal line, whereas a perfect classifier would score 1 for both precision and recall, corresponding to

the top-right corner of the plot. Though the models are not perfect, they perform considerably better than

a random classifier.

Turning to the fourth model, I use two different performance metrics because the outcome (the z-score) is

continuous. The R2 indicates the correlation between predicted and observed values, from 0 (no correlation)

to 1 (complete correlation). According to Table D.1, the explains 71.2 percent of the variation in the training

set, but only 22.1 percent of the variation in the test set. A second statistic, the Mean Squared Error (MSE),

measures the average squared difference between the observed and the predicted values. The measurement

unit for the MSE is the same as the unit for the outcome of interest (in this case, from –10.34 to 10.34), with

smaller values reflecting more accurate predictions. The MSE for the training set is 0.256, but increases to

0.694 in the test set. These discrepancies partly reflect the fact that GBMs tend to overfit on the training

data in the presence of outliers.

E Robustness Checks

E.1 Alternative Models: Random Forests and Generalized Linear Models

To predict each outcome, I estimate not only a GBM but also a second tree based model — a random

forest — as well as two penalized generalized linear models (GLM) — least absolute shrinkage and selection

operator (LASSO) and ridge regression. I begin by examining how different models predict the outcome

Missing. Figure E.1 presents the variable importance plots for all models predicting missingness. LASSO

and ridge do not drop the baseline category of a categorical variable, as a traditional regression would do

to avoid multicollinearity; this is why the two bottom panels in Panel (C) include specific levels of the

variable Executive Was Elected, for example. In addition, LASSO adds a penalty to the absolute values

of the coefficients (L1 regularization) that encourages most coefficients to become exactly zero, effectively

performing feature selection by eliminating irrelevant variables. For this specific model, only the five variables

displayed in Panel (C) have any importance; the remaining ones have zero importance. In contrast, ridge

regression adds a penalty to the squared values of the coefficients (L2 regularization) that discourages large

coefficients but does not force any coefficients to become exactly zero.

Figure E.2 and Table E.1 show that a GBM makes better out-of-sample predictions than a random forest,

though not by much. The other two models perform considerably worse, confirming Muchlinski et al.’s (2016)

conclusion that tree-based models outperform logistic regressions when predicting class-imbalanced data in

14



Figure E.1: Predicting Missingness: Variable Importance Plot, All Models (Training Set)
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(C) LASSO
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(D) Ridge

0.00 0.25 0.50 0.75 1.00

State Capacity

Civil War = 0

Civil War = 1

Polyarchy

Freedom of
Academic

Expression = 0
 (Not Respected)

Scaled Importance

 

These panels show the relative importance of the top five variables, by model. The least important variable equals zero, while
the most important variable equals one. LASSO adds a penalty to the absolute values of the coefficients (L1 regularization)
that encourages most coefficients — like that of all other variables not depicted here — to become exactly zero.

Table E.1: Predicting Missingness: Performance Statistics, All Models

Training Validation Test
GBM (Main Model)
AUC 0.9978304 0.7662927 0.9317631
AUCPR 0.9976250 0.2921954 0.3297605
Random Forest
AUC 0.9998257 0.6969753 0.9125035
AUCPR 0.9188185 0.1691374 0.4266687
LASSO
AUC 0.8785639 0.6440872 0.6104736
AUCPR 0.4569622 0.1046754 0.02249346
Ridge
AUC 0.9144365 0.5869146 0.6799721
AUCPR 0.6919903 0.0565727 0.1277197

political science. I also considered other options, but they all had important shortcomings: Näıve Bayes

Classifiers rely on strong assumptions about the independence of predictors; Support Vector Machines are

sensitive to outliers; deep learning models are computationally challenging and difficult to interpret. Tree-

based models are not perfect, but they do a better job of capturing the idiosyncrasies of GDP data than

alternative models.

15



Figure E.2: Predicting Missingness: ROC and PR Curves, All Models (Test Set)

(A) ROC Curve
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(B) PR Curve
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Panel (A) presents a Receiver Operating Characteristic (ROC) curve for the the test set using four models: GBM (presented
in the main text), random forest, LASSO, and ridge regression. Similarly, Panel (B) presents a Precision-Recall (PR) curve,
also for the test set and also using the same four models.

Below, I present similar results for the other outcomes. Figure E.3, Table E.2, and Figure E.4 confirm

that a GBM makes better out-of-sample predictions for Change, whereas Figure E.5, Table E.3, and Figure

E.6 support the same conclusion for the outcome Outlier.

Table E.2: Predicting Change: Performance Statistics, All Models

Training Validation Test
GBM (Main Model)
AUC 0.9293748 0.8933057 0.8783696
AUCPR 0.9188185 0.4705715 0.4557725
Random Forest
AUC 0.9625070 0.8052770 0.7879675
AUCPR 0.9544986 0.3814282 0.3609348
LASSO
AUC 0.7819766 0.7924853 0.7725845
AUCPR 0.3238795 0.3434476 0.3273591
Ridge
AUC 0.7884536 0.7945496 0.7757873
AUCPR 0.2975521 0.3217342 0.3064647
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Figure E.3: Predicting Change: Variable Importance Plot, All Models (Training Set)

(A) GBM (Main Model)
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(D) Ridge
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These panels show the relative importance of the top five variables, by model. The least important variable equals zero, while
the most important variable equals one. LASSO adds a penalty to the absolute values of the coefficients (L1 regularization)
that encourages most coefficients — like that of all other variables not depicted here — to become exactly zero.

Figure E.4: Predicting Change: ROC and PR Curves, All Models (Test Set)

(A) ROC Curve, Outcome: Change
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(B) PR Curve, Outcome: Change
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Model GBM (Main Model) Random Forest Lasso Ridge

Panel (A) presents a Receiver Operating Characteristic (ROC) curve for the the test set using four models: GBM (presented
in the main text), random forest, LASSO, and ridge regression. Similarly, Panel (B) presents a Precision-Recall (PR) curve,
also for the test set and also using the same four models.
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Figure E.5: Predicting Outliers: Variable Importance Plot, All Models (Training Set)
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(B) Random Forest
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(C) LASSO
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(D) Ridge
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These panels show the relative importance of the top five variables, by model. The least important variable equals zero, while
the most important variable equals one. LASSO adds a penalty to the absolute values of the coefficients (L1 regularization)
that encourages most coefficients — like that of all other variables not depicted here — to become exactly zero.

Table E.3: Predicting Outliers: Performance Statistics, All Models

Training Validation Test
GBM (Main Model)
AUC 0.9354866 0.8695898 0.8536371
AUCPR 0.9212325 0.3784833 0.3641515
Random Forest
AUC 0.9990912 0.8245832 0.8062617
AUCPR 0.9987284 0.3076397 0.315212
LASSO
AUC 0.7401503 0.7441611 0.7255345
AUCPR 0.2015761 0.2042317 0.172373
Ridge
AUC 0.7696063 0.7670707 0.7298865
AUCPR 0.2556064 0.2308627 0.2013158
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Figure E.6: Predicting Change: ROC and PR Curves, All Models

(A) ROC Curve, Outcome: Outlier
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(B) PR Curve, Outcome: Outlier
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Panel (A) presents a Receiver Operating Characteristic (ROC) curve for the the test set using four models: GBM (presented
in the main text), random forest, LASSO, and ridge regression. Similarly, Panel (B) presents a Precision-Recall (PR) curve,
also for the test set and also using the same four models.

Lastly, I examine the relative performance of a GBM predicting the Z-Score. As Figure E.7, Table E.4,

and Figure E.8 show, all four models (and the two GLMs in particular) struggle to predict extreme values

of this continuous outcome.
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Figure E.7: Predicting Z-Scores: Variable Importance Plot, All Models (Training Set)

(A) GBM (Main Model)
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(B) Random Forest
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(C) LASSO
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(D) Ridge
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These panels show the relative importance of the top five variables, by model. The least important variable equals zero, while
the most important variable equals one. LASSO adds a penalty to the absolute values of the coefficients (L1 regularization)
that encourages most coefficients — like that of all other variables not depicted here — to become exactly zero.

Table E.4: Predicting Z-Scores: Performance Statistics, All Models

Training Validation Test
GBM (Main Model)
R2 0.7123624 0.3019717 0.2208295
MSE 0.2561792 0.6169476 0.6936291
Random Forest
R2 0.4145735 0.3173313 0.2521846
MSE 0.5213995 0.6033722 0.6657163
LASSO
R2 0.1216233 0.2230289 0.2023817
MSE 0.7823102 0.6867207 0.7100516
Ridge
R2 0.1223481 0.2259166 0.2050922
MSE 0.7816648 0.6841684 0.7076387
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Figure E.8: Predicted Versus Observed Values (Test Set)

(C) LASSO (D) Ridge

(A) GBM (Main Model) (B) Random Forest
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This figure plots the observed values on the x-axis against the predicted values on the y-axis. Each point represents an
observation, and the diagonal line represents perfect predictions. The closer the points are to the diagonal line, the better the
model’s predictions align with the actual values. Note that Panels (C) and (D) are nearly identical: LASSO and ridge models
struggle to predict extreme values at a similar rate.

E.2 Alternative Predictors: Reported and Reporting Years

The main analysis only includes predictors for the reported year t. I also estimate models including each

variable twice, both for year t and for year k, as current circumstances might drive changes in older data.

For example, the Greek government revised existing statistics after Prime Minister Papandreou came to

power in 2009, so Greek statistics with k ⩾ 2009 could be different from previous vintages. Still, these cases

are rare. Since reporting-year characteristics are highly correlated with reported-year characteristics, the
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inclusion of the former leads to an unstable and redundant models that overfit the training data, without

meaningful gains in the predictions for the test set, as Tables E.5 to E.8 show. Figure E.9 confirms that

variables from the reported year matter most: the top predictor of variation in Missing continues to be

Polyarchy (Reported), whereas the top predictor of variation in Change, Outlier, and Z-Score continues to

be Vintage ID.

Table E.5: Predicting Missingness: Performance Statistics, Including Reported and Reporting Years

Training Validation Test
GBM (Main Model)
AUC 0.9978304 0.7662927 0.9317631
AUCPR 0.9976250 0.2921954 0.3297605
GBM (Including Reported and Reporting Years)
AUC 0.9999704 0.7691764 0.8692491
AUCPR 0.9999551 0.1079385 0.3108512

Table E.6: Predicting Change: Performance Statistics, Including Reported and Reporting Years

Training Validation Test
GBM (Main Model)
AUC 0.9293748 0.8933057 0.8783696
AUCPR 0.9188185 0.4705715 0.4557725
GBM (Including Reported and Reporting Years)
AUC 0.9958117 0.8954220 0.8715448
AUCPR 0.9941449 0.4715352 0.3861584

Table E.7: Predicting Outliers: Performance Statistics, Including Reported and Reporting Years

Training Validation Test
GBM (Main Model)
AUC 0.9354866 0.8695898 0.8536371
AUCPR 0.9212325 0.3784833 0.3641515
GBM (Including Reported and Reporting Years)
AUC 0.9980507 0.8157824 0.8243962
AUCPR 0.9975861 0.2992289 0.2953656

Table E.8: Predicting Z-Scores: Performance Statistics, Including Reported and Reporting Years

Training Validation Test
GBM (Main Model)
R2 0.7123624 0.3019717 0.2208295
MSE 0.2561792 0.6169476 0.6936291
GBM (Including Reported and Reporting Years)
R2 0.4550616 0.3020185 0.2509994
MSE 0.4853395 0.6169063 0.6667714
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Figure E.9: Variable Importance Plot (Training Set)

(C) Outcome: Outlier (D) Outcome: Z−Score

(A) Outcome: Missing (B) Outcome: Change
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This figure shows the relative importance of each predictor, by outcome. The least important predictor equals zero, while the
most important predictor equals one. The importance of each predictor is a function of whether it was selected to create a
binary split, and if so, how much the squared error (averaged over all trees) increased or decreased because of said split.
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E.3 Alternative Predictors: WDI

Table C.2 lists 18 economic and demographic predictors that are not included in the main analysis. Be-

low, I present the results of additional models including these 18 predictors (in addition to the 38 original

predictors). Including more predictors increases a model’s complexity; when the model is too complex, it

fits the training data too closely, capturing noise and outliers. This might result in a lower performance on

new data, as the model fails to generalize effectively. Indeed, models including these 18 predictors tend to

perform no better than the main models, and sometimes in fact slightly worse, as Tables E.9 to E.12 show.

Table E.9: Predicting Missingness: Performance Statistics, Including WDI Variables

Training Validation Test
GBM (Main Model)
AUC 0.9978304 0.7662927 0.9317631
AUCPR 0.9976250 0.2921954 0.3297605
GBM (Including WDI Variables)
AUC 0.9992545 0.8261948 0.8727175
AUCPR 0.9991468 0.2379344 0.2521146

Table E.10: Predicting Change: Performance Statistics, Including WDI Variables

Training Validation Test
GBM (Main Model)
AUC 0.9293748 0.8933057 0.8783696
AUCPR 0.9188185 0.4705715 0.4557725
GBM (Including WDI Variables)
AUC 0.9448182 0.8027452 0.7843408
AUCPR 0.9350744 0.3717094 0.3406877

Table E.11: Predicting Outliers: Performance Statistics, Including WDI Variables

Training Validation Test
GBM (Main Model)
AUC 0.9354866 0.8695898 0.8536371
AUCPR 0.9212325 0.3784833 0.3641515
GBM (Including WDI Variables)
AUC 0.9989961 0.8391951 0.8195714
AUCPR 0.9985814 0.3473658 0.3283745
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Table E.12: Predicting Z-Scores: Performance Statistics, Including WDI Variables

Training Validation Test
GBM (Main Model)
R2 0.7123624 0.3019717 0.2208295
MSE 0.2561792 0.6169476 0.6936291
GBM (Including WDI Variables)
R2 0.4619303 0.3230428 0.2692702
MSE 0.4792220 0.5983240 0.6505065

As Figure E.10 shows, the main predictor of missingness in an expanded model is KAOPEN, Chinn

and Ito’s (2006) capital openness index, constructed using data from the IMF’s Annual Report on Exchange

Arrangements and Exchange Restrictions (see Chinn and Ito 2008 for more information). The main predictor

of Change, Outlier, and Z-Score continues to be Vintage ID. Given that these models increase complexity

and computational needs without improving performance, I opted to present the more parsimonious models

in the main text.
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Figure E.10: Variable Importance Plot (Training Set)
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This figure shows the relative importance of each predictor, by outcome. The least important predictor equals zero, while the
most important predictor equals one. The importance of each predictor is a function of whether it was selected to create a
binary split, and if so, how much the squared error (averaged over all trees) increased or decreased because of said split.

26



F Model Specification

F.1 Classification Trees

I estimate all models using the open source machine learning platform H2O, implemented via R. To predict

missingness (a classification task), I estimate a GBM with the hyperparameters described below; the de-

scription draws heavily from the H2O.ai user documentation (available under https://docs.h2o.ai/) as

well as from Cook (2017, 117-125). I maintained several of the default values provided by H2O, because there

are so many available observations that not much additional calibration is needed to improve performance.

ntrees = p × 20. This is the number of trees, with p = 40 in this case. Higher values are computa-

tionally intensive and do not perform better.

sample_rate = 1. Each tree is trained on 100 percent of the training data, drawn at random and without

replacement (default value).

col_sample_rate = 1. 100 percent of the p = 40 columns are randomly selected and used for building

each tree in the ensemble (default value).

col_sample_rate_per_tree = 0.8. 80 percent of the p = 40 columns are used for each individual tree

(default value is 1). This allows for different columns to be selected for different trees.

max_depth = 15. The maximum tree depth is specified as 15 (default value is 5), which means that each

tree has up to 15 splits. Higher values (as in, more complex trees) are computationally intensive and can

lead to overfitting.

min_rows = 1. This parameter specifies the minimum number of observations for a terminal node (default

value). The default value indicates that there might be a combination of splits that explains something seen

only once in the training data: there might be a path through the tree that leads to only one observation.

learn_rate = 0.1. Rate at which the algorithm learns (default value). Lower learning rates are better,

but more computationally intensive.

stopping_rounds = 5. The model uses early stopping: it stops training when the option selected for

stopping˙metric does not improve for 5 training rounds, based on a simple moving average (default value is

0, without early stopping).

stopping_metric = ‘‘AUTO’’. The default stopping metric for classification tasks is Log Loss.

stopping_tolerance = 1e-3. This is the tolerance value by which a model must improve before training

ceases (default value).

balance_classes = T. This hyperparameter only exists for classification tasks; it balances the class

distribution, either by undersampling the majority class or by oversampling the minority class.
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class_sampling_factors = c(0.8, 1). This hyperparameter only exists for classification tasks; it tells

the model to specifically undersample the majority class.

F.2 Regression Trees

As before, I estimate all models using the open source machine learning platform H2O, implemented via R.

To predict deviation (a regression task), I estimate a GBM with the following hyperparameters:

ntrees = p × 20. This is the number of trees, with p = 40 in this case. Higher values are computa-

tionally intensive and do not perform better.

sample_rate = 0.8. Each tree is trained on 80 percent of the training data, drawn at random and

without replacement (default value is 1).

col_sample_rate = 0.6. 60 percent of the p = 40 columns are randomly selected and used for building

each tree in the ensemble (default value is 1).

col_sample_rate_per_tree = 1. 100 percent of the p = 40 columns are used for each individual tree

(default value).

max_depth = 5. The maximum tree depth is specified as 5 (default value), which means that each tree

has up to 5 splits.

min_rows = 10. I increased the minimum number of observations for a terminal node from 1 to 10

(default value is 1).

learn_rate = 0.05. Rate at which the algorithm learns (default is 0.1). Lower learning rates are better,

but more computationally intensive.

stopping_rounds = 10. The model uses early stopping: it stops training when the option selected for

stopping˙metric does not improve for 10 training rounds, based on a simple moving average (default value is

0, without early stopping).

stopping_metric = ‘‘AUTO’’. The default stopping metric for regression tasks is the mean residual

deviance.

stopping_tolerance = 1e-4. This is the tolerance value by which a model must improve before training

ceases (default value is 1e-3).
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